ПAmIBIA UПIVERSITY
 OF SCIEחCE AחD TECHחOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: ORC601S	COURSE NAME: ORGANIC CHEMISTRY 1
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	MR. DAVID NANHAPO
MODERATOR:	PROF. HABAUKA KWAAMBWA

INSTRUCTIONS
1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black ink and sketches
can be done in pencil

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

pKa Chart and Periodic Table

THIS QUESTION PAPER CONSISTS OF 14 PAGES

(Including this front page, pKa Chart and Periodic Table)
Page 1 of 14

QUESTION 1: Multiple Choice Questions

- There are 25 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
1.1 Rank the acidity of the labelled protons in the following molecule from the lowest to the highest acidity.

A. $\mathrm{Ha} ; \mathrm{Hb} ; \mathrm{Hc}$
B. $\mathrm{Hb} ; \mathrm{Hc} ; \mathrm{Ha}$
C. $\mathrm{Hc} ; \mathrm{Ha} ; \mathrm{Hb}$
D. Hb ; Ha ; Hc
1.2 List the following compounds in the order of increasing acidity.
A.

B.

c. $\mathrm{CH}_{3} \mathrm{OH}$
D.

A. A; B; C; D
B. A; C; B; D
C. A; C; D; B
D. D; C; $; B$
1.4 What is the IUPAC name for the structure below?

A. 3-ethyl-4-methyl-2-hexanol
B. 2-ethyl-1,3-dimethyl-1-heptanol
C. 4-ethyl-3,5-dimethyl-5-hexanol
D. (1-hydroxyethyl)-3-methylhexane
1.4 Designate the following compound as R or S configuration.
A. R
B. S

C. R, S
D. None of the above
1.5 Does the equilibrium of this reaction lie to the left or right?

A. Left
B. Right
C. It cannot be determined
D. The forward and reverse reactions are equally favoured.
1.6 Determine the product(s) in the reaction below.

A.

B.

D. A and B
1.7 Which compound would you predict to be highest in energy?

A. A
B. B
C. C
D. D
1.8 How many stereogenic centres does the addictive drug heroin have?

A. 4
addicting drug
B. 5
C. 6
D. 7
1.9 In question 1.7 above, what kind of reaction does the conversion of A to D represent?
A. Addition
B. Elimination
C. Subtraction
D. Substitution
1.10 Which of the following statements is (are) true about the energy diagram drawn below?

A. The reaction mechanism has two steps
B. blabels a transition state.
C. The overall reaction is endothermic
D. The conversion of \mathbf{a} to \mathbf{b} is faster than the conversion of \mathbf{b} to \mathbf{c}.
1.11 What is the IUPAC name for the structure below?

A. (R)-3-chloro-6-ethyloctane
B. (S)-3-chloro-6-ethyloctane
C. (S)-6-chloro-3-ethyloctane
D. (R)-6-chloro-3-ethyloctane
1.12 Which of the following compounds is most likely to show first-order kinetics in a substitution reaction?

A

B

C

D
A. A
B. B
C. C
D. D
1.13 Given the following substitution reaction, what would the effect be of changing the solvent from ethanol to DMSO?

$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{Br}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OH}+\mathrm{Br}^{-}$

A. The rate would increase because $S_{N} 2$ reactions favour a polar aprotic solvent
B. The rate would decrease because $S_{N} 1$ reactions favour a polar protic solvent
C. The rate would not be affected by the change in solvent.
D. The potential change cannot be predicted
1.14 Which of the following anions is the best leaving group?
A) $\mathrm{NH}_{2}{ }^{-}$
B) Cl^{-}
C) $\mathrm{CH}_{3}{ }^{-}$
D) OH^{-}
A. A
B. B
C. C
D. D
1.15 Which of the following is the strongest nucleophile in polar protic solvents?
A) F^{-}
B) $\mathrm{CH}_{3} \mathrm{O}^{-}$
C) HO^{-}
D) $\mathrm{CH}_{3} \mathrm{~S}^{-}$
A. A
B. B
C. C
D. D
1.16 Which of the following carbocations is the most stable?

A

B

C

D
A. A
B. B
C. C
D. D
1.17 Which alkyl halide (A-C) would give the following alkene (Y) as the only product in an elimination reaction?

A

B

C

Y
A. A
B. B
C. C
D. A and B
1.18 Which of the following statements is (are) true about an E2 elimination reaction?
A. It is fastest with 3° Halides
B. It exhibits second-order kinetics
C. A better leaving group should make a faster reaction
D. All of the above are true
1.19 A tertiary halide reacts with a weak base and nucleophile. The reaction will proceed via which of the following mechanism(s)?
A. $S_{N} 1$
B. $\mathrm{S}_{\mathrm{N}} 1$ and E1
C. E2
D. $\mathrm{S}_{\mathrm{N}} 1$ and E2
1.20 Give the IUPAC name for the following compound.

A. (Z)-1-bromo-2-chloro-2-ethyl-4-methyl-1-pentene
B. (E)-1-bromo-1-chloro-2-ethyl-4-methyl-2-pentene
C. (Z)-1-bromo-1-chloro-2-ethyl-4-methyl-1-pentene
D. (E)-1-bromo-1-chloro-2-ethyl-4-methyl-1-pentene
1.21 Which of the following reaction conditions would result in the anti-Markovnikov addition to the alkene?
A) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
B) HBr
C) HCl
D) [1] BH_{3}; [2] $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}$
1.22 Give the IUPAC name of the following compound.

$\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}$

A. 2,2,7-trimethyl-4-nonyne
B. 2,2,7-trimethyl-4-decyne
C. 3,3,7-trimethyl-4-decyne
D. 2,2,6-trimethyl-4-undecyne
1.23 What is the product of the following reaction?

A.
 NH_{2}
B.

C.

D.

1.24 How many peaks could theoretically be observed in the ${ }^{1} \mathrm{H}$ NMR signal(s) for each of the indicated atoms?
A

B

C

D

A. a: 7; b: 4; c: 3; d: 3
B. a: 7; b: 3; c: 3; d: 3
C. a: 7; b: 4; c: 2; d: 4
D. a: 7; b: 4; c: 3; d: 4
1.25 Which of the following is the correct structure for 1-bromo-2,4-dimethoxybenzene?

A

B

c

D

SECTION B:

QUESTION 2

2.1 Show with arrows, how the following products are formed.
a)

b)

2.2 Assign R and S configuration to all possible stereoisomers of 1-Bromo-2methylcyclopentane.

QUESTION 3

3.1 Name and label all the functional groups in the structure. Be sure to indicate primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$ or tertiary $\left(3^{\circ}\right)$, where appropriate.

3.2 Draw bond-line structures of the following molecules:
a) 2-chloro-1, 7, 7-trimethylbicyclo [2.2.1] heptane
b) 3-ethyl-6-methyl-5-propyInonane
c) 2, 6-dimethyl-4-(2-methylpropyl)decane
4.1 Predict the product(s) of the following reaction
a)

b)

c)

d)

e)

$\mathrm{f}) \frac{\text { 1. } \mathrm{BH}_{3} / \mathrm{THF}}{\text { 2. } \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}}$

QUESTION 5

5.1 Assign formal the charge to each atom in the following structure:

5.2 Give (i) a reaction equation and (ii) full mechanism for the acid-catalyzed (HCl) addition of water to 1-methyl-1-cyclopentene.

QUESTION 6

[8]
An Unknown compound X has the molecular formula $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$. \mathbf{X} shows a peak in its IR spectrum at $3200-3600 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR Spectral data of X are given below. What is the most likely Structure of X ?

absorption	$\mathbf{\delta}$	H ratio
singlet	1.0	9
doublet	1.2	3
singlet	3.0	1
quartet	3.5	1

${ }^{1} \mathrm{H}$ NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
	0.9-2		4.5-6
- RCH_{3} - $\mathrm{R}_{2} \mathrm{CH}_{2}$ - $\mathrm{R}_{3} \mathrm{CH}$	$\begin{aligned} & \sim 0.9 \\ & \sim 1.3 \\ & \sim 1.7 \end{aligned}$		6.5-8
	1.5-2.5		9-10
$-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	~ 2.5		10-12
	2.5-4	$\mathrm{RO}-\mathrm{H}$ or $\mathrm{R}-\mathrm{N}-\mathrm{H}$	1-5

Important IR Absorptions

Bond type	Approximate $\bar{v}\left(\mathrm{~cm}^{-1}\right)$	Intensity
$\mathrm{O}-\mathrm{H}$	3600-3200	strong, broad
$\mathrm{N}-\mathrm{H}$	3500-3200	medium
$\mathrm{C}-\mathrm{H}$	~3000	
- $\mathrm{C}_{5 \mathrm{~s}^{3}}-\mathrm{H}$	3000-2850	strong
- $\mathrm{C}_{s p}{ }^{2}-\mathrm{H}$	3150-3000	medium
- $\mathrm{C}_{s p}-\mathrm{H}$	3300	medium
$C \equiv C$	2250	medium
$\mathrm{C} \equiv \mathrm{N}$	2250	medium
$\mathrm{C}=0$	1800-1650 (often ~1700)	strong
$C=C$	1650	medium
	1600, 1500	medium

